BT:153 T-25-13

FAST TURN-OFF THYRISTOR

Glass-passivated fast-turn-off thyristor in a TO-220AB envelope, intended for use in inverter, pulse and switching applications. Its characteristics make the device extremely suitable for use in regulator, vertical deflection, and east/west correction circuits of colour television receivers.

QUICK REFERENCE DATA

Repetitive peak off-state voltage					—
Average on-state current	VDRM	max.	500	٧	
	^l T(AV)	max.	4	Α	
R.M.S. on-state current	IT(RMS)	max.	6	Α	
Repetitive peak on-state current	TRM	max.	30	Α	
Circuit-commutated turn-off time	tq	<	20	μs	

MECHANICAL DATA

Fig. 1 TO-220AB.

Dimensions in mm

สารสุดสมุทิตให้เป็นเดือน เดือน เอเลนเป็นเป็นผู้เป็นเดือนให้เป็นเดือน เลื่อง เดือน เดือน เลือน เดือน

T-25-13

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Anode to cathode				
Non-repetitive peak voltages (t ≤ 10 ms)	V _{DSM} /V _{RSM}	max.	550	٧
Repetitive peak voltages	V _{DRM} /V _{RRM}	max.	500	٧
Working voltages	V_{DW}/V_{RW}	max.	400	٧ *
Average on-state current (averaged over any 20 ms period) up to T _{mb} = 95 °C	^I T(AV)	max.	4	Α
R.M.S. on-state current	IT(RMS)	max.	`6	Α
Working peak on-state current	ITWM .	max.	10	Α
Repetitive peak on-state current	TRM	max.	30	Α
Non-repetitive peak on-state current; t = 10 ms; half sine-wave; T _j = 110 °C prior to surge;		*** 01/	40	Α.
with reapplied V _{RWMmax}	ITSM	max.		
l ² t for fusing; t = 10 ms; T _j = 25 °C	l²t	max.	10	A ² s
Rate of rise of on-state current after triggering up to f = 20 kHz; V _{DM} = 300 V to I _{TM} = 6 A	dlγ/dt	max.	200	A/μs
Gate to cathode				
Average power dissipation (averaged over any 20 ms period)	P _G (AV)	max.	1	w
Peak power dissipation; $t = 10 \mu s$	P _{GM}	max.	25	W
Temperatures			. ·	
Storage temperature	T _{stg}	-40 to	+ 125	оС
Operating junction temperature	T:	max.	110	oc

A madring distributions, the should be additionable of the contract of the con

^{*} Voltage shapes as occurring in the intended application.

Fast turn-off thyristor

BT153

T-25.13

THERMAL RESISTANCE

From junction to mounting base	R _{th i-mb}	=	1,5 °C/W
Transient thermal impedance; t = 1 ms	•		0,2 °C/W

Influence of mounting method

1. Heatsink mounted with clip (see mounting instructions)

Thermal resistance from mounting base to heatsink

a. with heatsink compound	Rth mb-h	=	0,3	oc/w
b. with heatsink compound and 0,06 mm maximum mica insulator	Rth mb-h	=	1,4	oC/W
c. with heatsink compound and 0,1 mm maximum mica insulator (56369)	R _{th mb-h}	=	2,2	oC/W
d. with heatsink compound and 0,25 mm max. alumina insulator (56367)	R _{th mb-h}	=	8,0	oc/W
e. without heatsink compound	R _{th mb-h}	=	1,4	oc/w

2. Free-air operation

The quoted values of $R_{th\ j-a}$ should be used only when no leads of other dissipating components run to the same tie-point.

Thermal resistance from junction to ambient in free air: mounted on a printed-circuit board at a = any lead length and with copper laminate

 $R_{th j-a} = 60 \text{ °C/W}$

Fig. 2.

DISCONSIDEREN DE L'AND DE L'AN

BT153

T-25-13

CHARACTERISTICS

Anode to cathode

On-state voltage $I_T = 10 \text{ A}$; $T_j = 25 \text{ °C}$ Rate of rise of off-state voltage that will not trigger any device; $T_j \le 110 \text{ °C}$ Off-state current $V_D = V_{DRMmax}$; $T_i = 110 \text{ °C}$

 V_T < 2,5 V^*

 dV_D/dt < 200 $V/\mu s$

state current 'D = VDRMmax; Tj = 110 °C ID

 I_D < 1,5 mA I_H < 100 mA

Gate to cathode

Voltage that will trigger all devices $V_D=6~V;~T_j=25~^{\circ}C;~t_p\geqslant 5~\mu s$ Current that will trigger all devices $V_D=6~V;~T_j=25~^{\circ}C;~t_p\geqslant 5~\mu s$

 V_{GT} > 2,5 V

 I_{GT} > 40 mA

Switching characteristics

Holding current; T_j = 25 °C

Circuit-commutated turn-off time (in regulating circuits) when switched from I $_{T}$ = 10 A to V $_{R}$ \geqslant 50 V with -dI $_{T}$ /dt = 10 A/ μ s; dV $_{D}$ /dt = 200 V/ μ s; V $_{DM}$ = 500 V; R $_{GK}$ = 68 Ω ; T $_{mb}$ = 80 °C; t $_{p}$ \leqslant 50 μ s

 t_q < 20 μs

CHARLES CONTROL OF THE CONTROL OF TH

Fig. 3 Circuit-commutated turn-off time definition.

^{*} Measured under pulse conditions to avoid excessive dissipation.

Fast turn-off thyristor

BT153

T-25-13

MOUNTING INSTRUCTIONS

- The device may be soldered directly into the circuit, but the maximum permissible temperature of the soldering iron or bath is 275 °C; it must not be in contact with the joint for more than 5 seconds. Soldered joints must be at least 4.7 mm from the seal.
- 2. The leads should not be bent less than 2.4 mm from the seal, and should be supported during bending. The leads can be bent, twisted or straightened by 90° maximum. The minimum bending radius is 1 mm.
- 3. It is recommended that the circuit connection be made to the anode tag, rather than direct to the heatsink.
- 4. Mounting by means of a spring clip is the best mounting method because it offers:
 - a. a good thermal contact under the crystal area and slightly lower Rth mb-h values than screw mounting.
 - b. safe isolation for mains operation.
 - However, if a screw is used, it should be M3 cross-recess pan-head. Care should be taken to avoid damage to the plastic body.
- For good thermal contact, heatsink compound should be used between mounting base and heatsink. Values of Rth mb-h given for mounting with heatsink compound refer to the use of a metallic-oxide loaded compound. Ordinary silicone grease is not recommended.
- Rivet mounting (only possible for non-insulated mounting)
 Devices may be rivetted to flat heatsinks; such a process must neither deform the mounting tab, nor enlarge the mounting hole.
- 7. The heatsink must have a flatness in the mounting area of 0.02 mm maximum per 10 mm. Mounting holes must be deburred.

OPERATING NOTES

Dissipation and heatsink considerations:

 The various components of junction temperature rise above ambient are illustrated in Fig.4.

Fig.4

b. The method of using Fig.5 is as follows:

- difference and characteristics become and care the con-

Starting with the required current on the I_T(AV) axis, trace upwards to meet the appropriate form factor curve. Trace right horizontally and upwards from the appropriate value on the T_{amb} scale. The intersection determines the R_{th mb-a}. The heatsink thermal resistance value (R_{th h-a}) can now be calculated from:

Rth h-a = Rth mb-a - Rth mb-h-

c. Any measurement of heatsink temperature should be made immediately adjacent to the device.

April 1986

BT153

T-25-13

Fig. 5 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures.

 α = conduction angle per half cycle

$$a = form factor = \frac{IT(RMS)}{IT(AV)}$$

α	a
900 900 300	4 2,8 2,2
120°	1,9
180°	1,57

and a set independent applicable in a larger of the con-

T-25-13_

Fig. 6 The right-hand part shows the interrelationship between the power (derived from the left-hand part) and the maximum permissible temperatures.

P_{tot} = maximum power dissipation including gate and switching losses.

ITWM = maximum working peak on-state current.

Fig. 7 Waveform defining ITWM-

horizontal output transformer L1 TH2 vertical deflection

and the last the control of the cont

Fig. 8 Basic circuit of a vertical deflection system.

Fig. 9 Maximum permissible non-repetitive r.m.s. on-state current based on sinusoidal currents (f = 50 Hz); T_j = 110 o C prior to surge; with reapplied V_{RWMmax} .

868

March 1982

Fast turn-off thyristor

BT153 T-25-13

Fig. 10 Minimum gate voltage that will trigger all devices as a function of junction temperature.

Fig. 11 Minimum gate current that will trigger all devices as a function of junction temperature.

Fig. 12 — $T_j = 25 \, ^{\circ}\text{C}; --- T_j = 110 \, ^{\circ}\text{C}.$

Fig. 13.

March 1982

BT153

T-25-13

Fig. 14 Gate current that will trigger all devices as a function of rectangular pulse width; $T_j = 25$ °C.

1.1

Fast turn-off thyristor

BT153

T-25-13_

Fig. 15.

March 1982