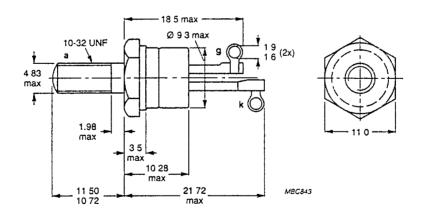
THYRISTORS

Glass-passivated silicon thyristors in metal envelopes, intended for use in power control circuits (e.g. light and motor control) and power switching systems.

The series consistos of reverse polarity types (anode to stud) identified by a suffix R: BTY79-400R to 1000R.


QUICK REFERENCE DATA

	BTY79-	400R	500R	600R	800R	1000R	
Repetitive peak voltages VDRM/VRRM	max.	400	500	600	800	1000	٧
Average on-state current		I _{T(AV)}	max.	10	Α		
R.M.S. on-state current	S. on-state current			IT(RMS	s) max.	16	Α
Non-repetitive peak on-state current				^I TSM	max.	150	Α

MECHANICAL DATA

Dimensions in mm

Fig. 1 TO-64: with 10-32 UNF stud (ϕ 4,83 mm).

Net mass: 7 g
Diameter of clearance hole: max. 5,2 mm
Accessories supplied on request:
see ACCESSORIES section

Torque on nut: min. 0,9 Nm (9 kg cm) max. 1,7 Nm (17 kg cm)

Supplied with device: 1 nut, 1 lock washer. Nut dimensions: across the flats: 9,5 mm.

Qualification approved to CECC 50 011-006.

BTY79 SERIES

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

Anode to cathode	В	3TY79-	400R	500R	600R	800R	1000R	
Non-repetitive peak off-state voltage $(t \le 10 \text{ ms})$	_{ge}	max.	500	1100	1100	1100	1100	V
Non-repetitive peak reverse voltage $(t \le 5 \text{ ms})$	V _{RSM}	max.	500	600	720	960	1100	V
Repetitive peak voltages	V _{DRM} /V _{RRM}	max.	400	500	600	800	1000	V
Crest working voltages	V_{DWM}/V_{RWM}	max.	400	500	600	800	1000	V*
Average on-state current (averaged any 20 ms period) up to T _{mb} =				ΙŢ	(AV)	max	. 10	Α
R.M.S. on-state current				ΙŢ	(RMS)	max	. 16	Α
Repetitive peak on-state current				ΙŢ	RM	max	. 75	Α
Non-repetitive peak on-state currer half sine-wave; T _j = 125 °C prio				1_			. 150	^
with reapplied V _{RWMmax}					SM	max		
l ² t for fusing (t = 10 ms)				12	t	max	. 112	A ² s
Rate of rise of on-state current aft $I_G = 150 \text{ mA}$ to $I_T = 30 \text{ A}$; dI_G				dl	_T /dt	max	. 50	A/μs
Gate to cathode								
Average power dissipation (average	ed over any 20 ms	period)	t	Po	G(AV)	max	•	
Peak power dissipation				P	GΜ	max	. 5	W
Temperatures								_
Storage temperature				T,	stg	- 55	to +125	
Junction temperature				T	i	max	c. 125	οС
THERMAL RESISTANCE								
From junction to mounting base				R	th j-mb	=	1,8	oC/M
From mounting base to heatsink with heatsink compound				R	th mb-h	=		°C/W
From junction to ambient in free	air			R	th j-a	=	45	oC\M
Transient thermal impedance (t =	1 ms)			Z	th j-mb	=	0,1	oC\M

^{*} To ensure thermal stability: $R_{th\ j-a} < 4$ °C/W (d.c. blocking) or < 8 °C/W (a.c.). For smaller heat-sinks $T_{j\ max}$ should be derated. For a.c. see Fig. 3.
** Although not recommended, higher off-state voltages may be applied without damage, but the

^{**} Although not recommended, higher off-state voltages may be applied without damage, but the thyristor may switch into the on-state. The rate of rise of on-state current should not exceed 100 A/µs.

75

2

35

μs

μs

<

lн

tgt

tq

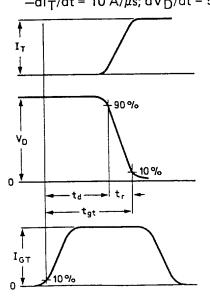
mΑ

CHARACTERISTICS

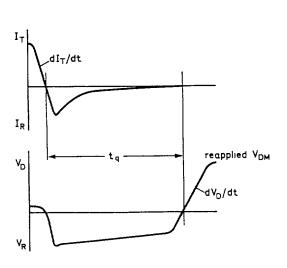
Anode to cathode

On-state voltage (measured under pulse conditions) $I_T = 20 \text{ A}; T_j = 25 \text{ oC}$	v_{T}	<	2	V
Rate of rise of off-state voltage that will not trigger any device; exponential method; $V_D = 2/3 \ V_{DRMmax}; T_j = 125 \ ^{O}C$	dV _D /dt	<	200	V/μs
Reverse current $V_R = V_{RWMmax}$; $T_j = 125 {}^{\circ}\text{C}$	I _R	<	3	mΑ
Off-state current $V_D = V_{DWMmax}$; $T_j = 125$ °C Latching current; $T_j = 25$ °C	ا <u>ل</u> ا	< <	3 150	mA mA

Gate to cathode

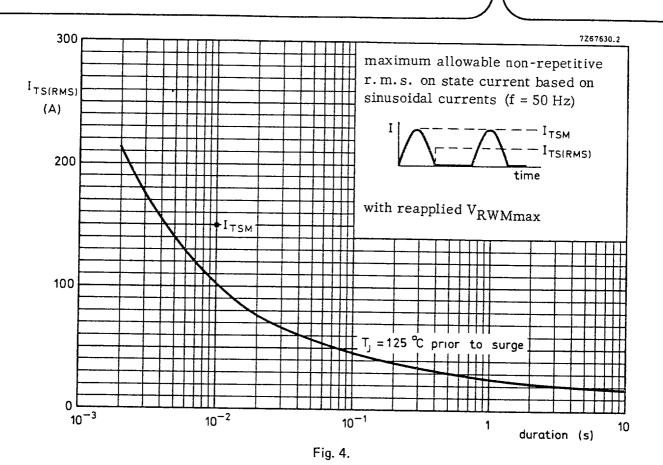

Holding current; T_i = 25 °C

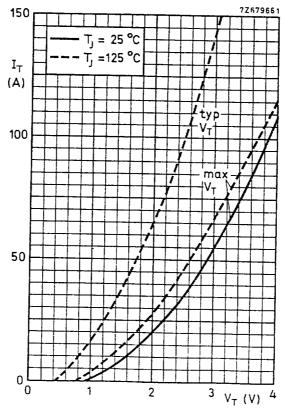
Voltage that will trigger all devices		_		
$V_D = 6 V; T_j = 25 °C$. V _{GT}	>	1.5	V
Voltage that will not trigger any device			200	\/
$V_D = V_{DRMmax}$; $T_j = 125$ °C	$v_{\sf GD}$	<	200	mV
Current that will trigger all devices				
$V_D = 6 V; T_j = 25 °C$	^I GT	>	30	mΑ
On request (see Ordering Note)	I _{GT}	>	20	mΑ


Switching characteristics

switched from V_D = V_{DRMmax} to I_T = 40 A; I_{GT} = 100 mA; dI_G/dt = 5 A/ μ s; T_j = 25 °C Circuit-commutated turn-off time when switched from I_T = 40 A to V_R > 50 V with -dI_T/dt = 10 A/ μ s; dV_D/dt = 50 V/ μ s; T_j = 115 °C

Gate-controlled turn-on time $(t_{gt} = t_d + t_r)$ when


ig.2a Gate-controlled turn-on time definition.



typ.

typ.

Fig.2b Circuit-commutated turn-off time definition.

OPERATING NOTE

The terminals should neither be bent nor twisted; they should be soldered into the circuit so that there is no strain on them.

During soldering the heat conduction to the junction should be kept to a minimum.

ORDERING NOTE

Types with low gate trigger current, $I_{GT} > 20$ mA, are available on request. Add suffix A to the type number when ordering: e.g. BTY79A-400R.

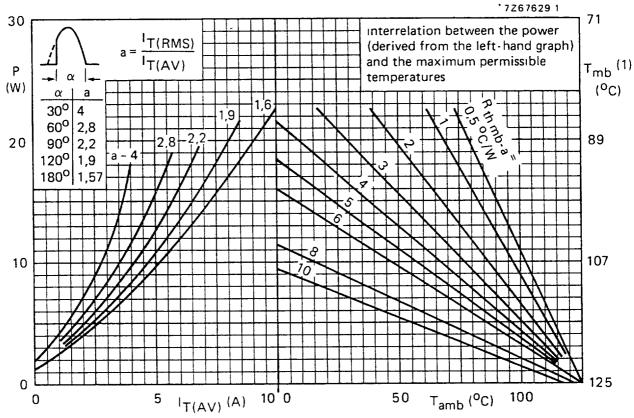


Fig. 3 (1) T_{mb} -scale is for comparison purposes only and is correct only for $R_{th\ mb-a} \le 6$ °C/W.

4

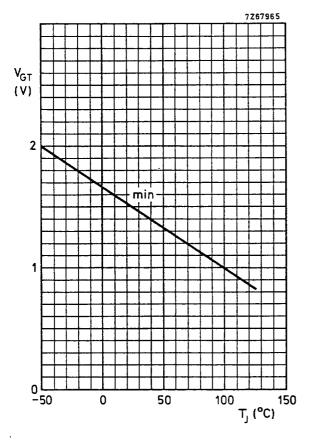


Fig. 6 Minimum gate voltage that will trigger all devices as a function of $T_{\hat{j}}$.

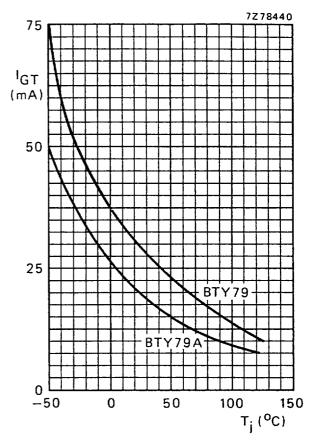


Fig. 7 Minimum gate current that will trigger all devices as a function of $\boldsymbol{\mathsf{T}}_{j}.$

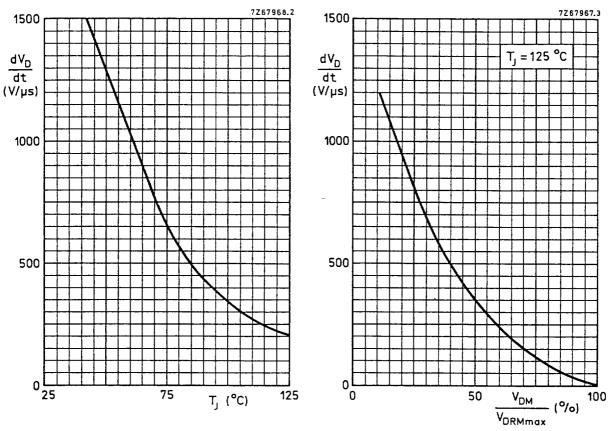


Fig. 8 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of T_i .

Fig. 9 Maximum rate of rise of off-state voltage that will not trigger any device (exponential method) as a function of applied voltage.

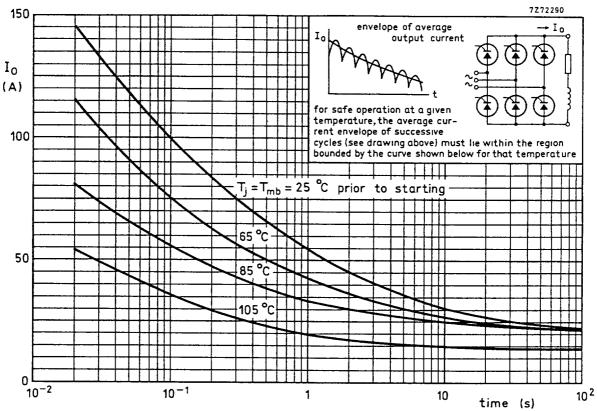
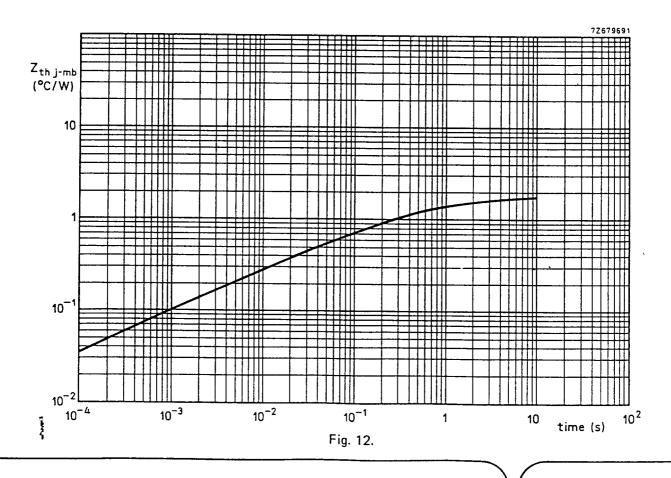
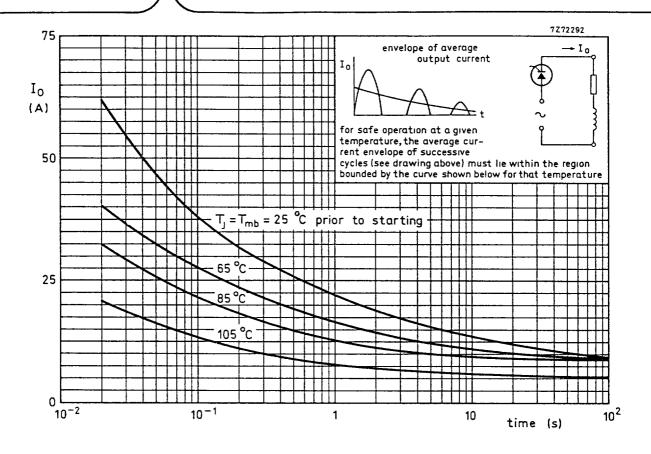




Fig. 11 Limits for starting or inrush currents.

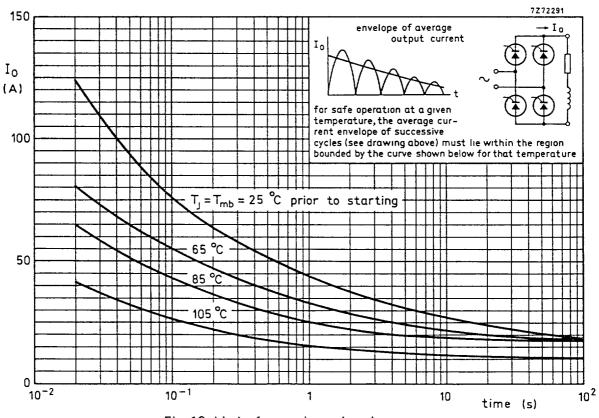


Fig. 10 Limits for starting or inrush currents.