Preferred Devices

SWITCHMODE™ Power Rectifiers

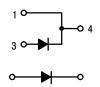
... designed for use in switching power supplies, inverters and as free wheeling diodes, these state-of-the-art devices have the following features:

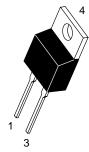
- Ultrafast 25, 50 and 75 Nanosecond Recovery Time
- 175°C Operating Junction Temperature
- Popular TO-220 Package
- Epoxy Meets UL94, V_O @ 1/8"
- Low Forward Voltage
- Low Leakage Current
- High Temperature Glass Passivated Junction
- Reverse Voltage to 600 Volts

Mechanical Characteristics:

- Case: Epoxy, Molded
- Weight: 1.9 grams (approximately)
- Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable
- Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds
- Shipped 50 units per plastic tube
- Marking: U805, U810, U815, U820, U840, U860

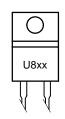
MAXIMUM RATINGS


Please See the Table on the Following Page



ON Semiconductor™

http://onsemi.com


ULTRAFAST RECTIFIERS 8.0 AMPERES 50-600 VOLTS

CASE 221B TO-220AC PLASTIC

MARKING DIAGRAM

U8xx = Device Code xx = 05, 10, 15, 20, 40 or 60

ORDERING INFORMATION

Device	Package	Shipping
MUR805	TO-220	50 Units/Rail
MUR810	TO-220	50 Units/Rail
MUR815	TO-220	50 Units/Rail
MUR820	TO-220	50 Units/Rail
MUR840	TO-220	50 Units/Rail
MUR860	TO-220	50 Units/Rail

Preferred devices are recommended choices for future use and best overall value.

MAXIMUM RATINGS

		MUR						
Rating	Symbol	805	810	815	820	840	860	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	V _{RRM} V _{RWM} V _R	50	100	150	200	400	600	Volts
Average Rectified Forward Current Total Device, (Rated V _R), T _C = 150°C	I _{F(AV)}	8.0					Amps	
Peak Repetitive Forward Current (Rated V _R , Square Wave, 20 kHz), T _C = 150°C	I _{FM}	16				Amps		
Nonrepetitive Peak Surge Current (Surge applied at rated load conditions halfwave, single phase, 60 Hz)	I _{FSM}	100				Amps		
Operating Junction Temperature and Storage Temperature Range	T _J , T _{stg}	-65 to +175					°C	
THERMAL CHARACTERISTICS								
Maximum Thermal Resistance, Junction to Case	$R_{\theta JC}$	3.0 2.0				.0	°C/W	
ELECTRICAL CHARACTERISTICS								
Maximum Instantaneous Forward Voltage (Note 1.) ($i_F = 8.0 \text{ Amps}, T_C = 150^{\circ}\text{C}$) ($i_F = 8.0 \text{ Amps}, T_C = 25^{\circ}\text{C}$)	VF	0.895 0.975		1.00 1.30	1.20 1.50	Volts		
Maximum Instantaneous Reverse Current (Note 1.) (Rated dc Voltage, $T_J = 150^{\circ}C$) (Rated dc Voltage, $T_J = 25^{\circ}C$)	i _R	250 500 5.0 10				μА		
Maximum Reverse Recovery Time $ (I_F = 1.0 \text{ Amp, di/dt} = 50 \text{ Amps/}\mu\text{s}) $ $ (I_F = 0.5 \text{ Amp, } I_R = 1.0 \text{ Amp, } I_{REC} = 0.25 \text{ Amp}) $	t _{rr}	35 25 60 50			-	ns		

^{1.} Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%.

MUR805, MUR810, MUR815, MUR820

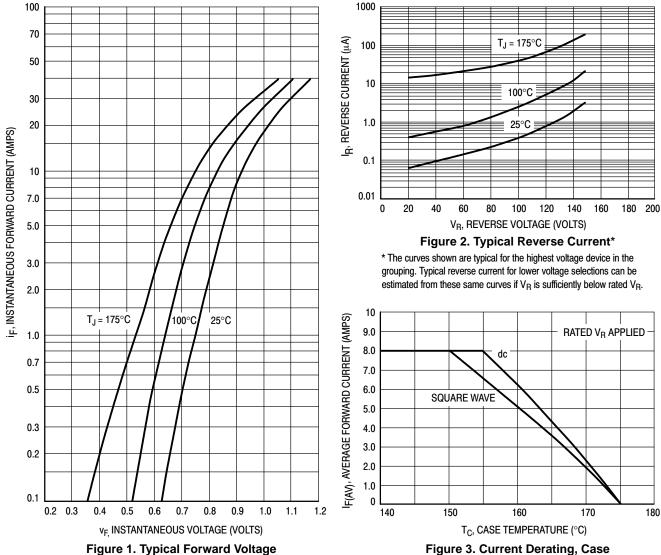


Figure 1. Typical Forward Voltage

10 9.0 $T_{.1} = 175^{\circ}C$

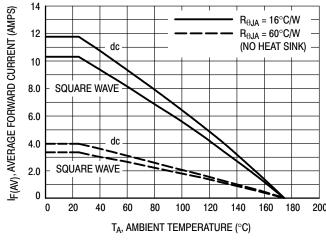


Figure 4. Current Derating, Ambient

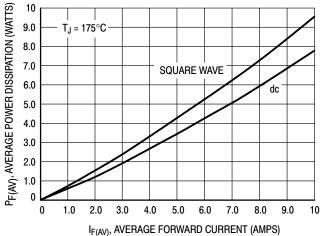


Figure 5. Power Dissipation

MUR840

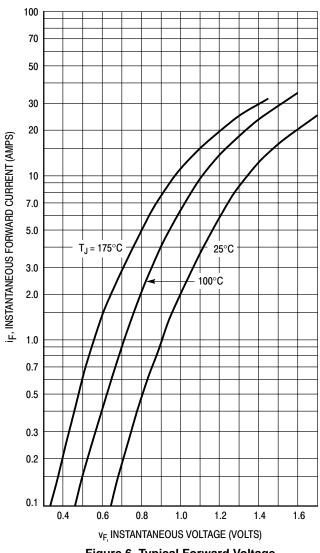


Figure 6. Typical Forward Voltage

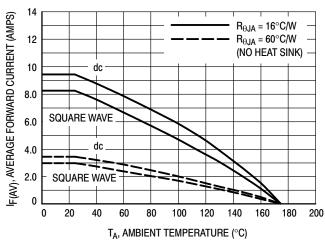


Figure 9. Current Derating, Ambient

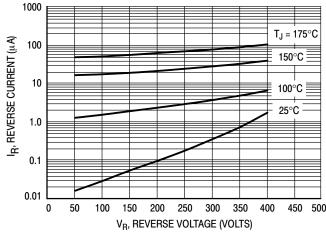


Figure 7. Typical Reverse Current*

* The curves shown are typical for the highest voltage device in the grouping. Typical reverse current for lower voltage selections can be estimated from these same curves if V_R is sufficiently below rated V_R .

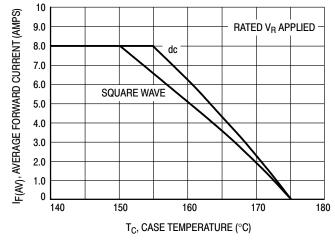


Figure 8. Current Derating, Case

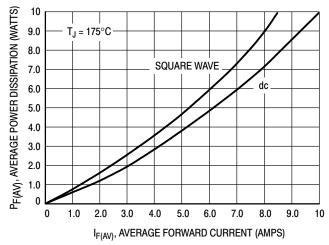
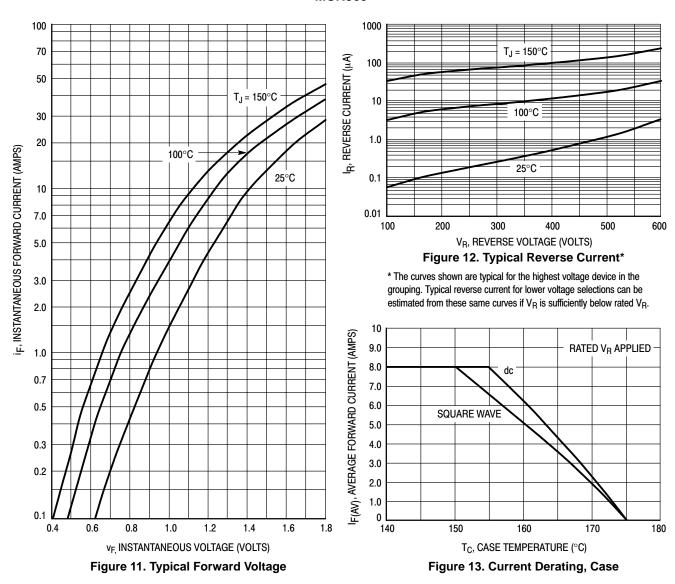



Figure 10. Power Dissipation

MUR860

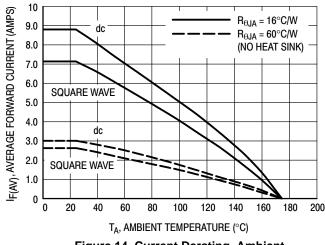


Figure 14. Current Derating, Ambient

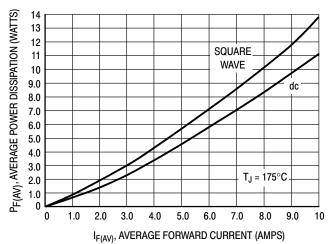


Figure 15. Power Dissipation

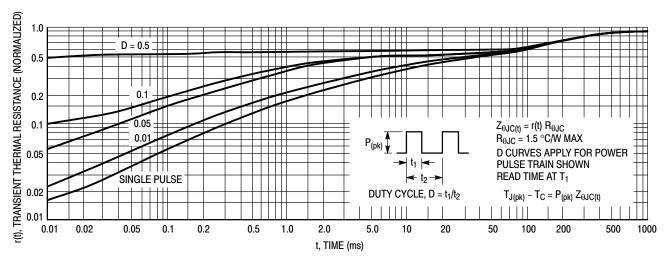


Figure 16. Thermal Response

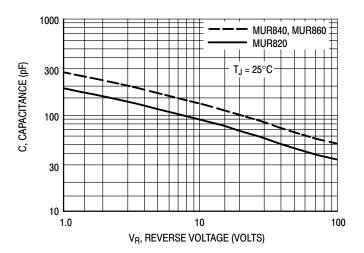
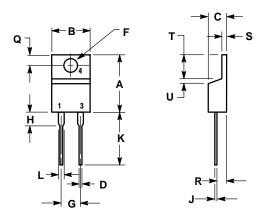



Figure 17. Typical Capacitance

PACKAGE DIMENSIONS

TO-220 TWO-LEAD

CASE 221B-04 ISSUE D

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
Α	0.595	0.620	15.11	15.75		
В	0.380	0.405	9.65	10.29		
С	0.160	0.190	4.06	4.82		
D	0.025	0.035	0.64	0.89		
F	0.142	0.147	3.61	3.73		
G	0.190	0.210	4.83	5.33		
Н	0.110	0.130	2.79	3.30		
J	0.018	0.025	0.46	0.64		
K	0.500	0.562	12.70	14.27		
L	0.045	0.060	1.14	1.52		
Q	0.100	0.120	2.54	3.04		
R	0.080	0.110	2.04	2.79		
S	0.045	0.055	1.14	1.39		
T	0.235	0.255	5.97	6.48		
U	0.000	0.050	0.000	1 27		

SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

NORTH AMERICA Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303–675–2175 or 800–344–3860 Toll Free USA/Canada **Fax**: 303–675–2176 or 800–344–3867 Toll Free USA/Canada

Email: ONlit@hibbertco.com

Fax Response Line: 303-675-2167 or 800-344-3810 Toll Free USA/Canada

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor - European Support

German Phone: (+1) 303–308–7140 (Mon–Fri 2:30pm to 7:00pm CET)
Email: ONlit–german@hibbertco.com

French Phone: (+1) 303–308–7141 (Mon–Fri 2:00pm to 7:00pm CET)

Email: ONlit-french@hibbertco.com

English Phone: (+1) 303–308–7142 (Mon–Fri 12:00pm to 5:00pm GMT)

Email: ONlit@hibbertco.com

EUROPEAN TOLL-FREE ACCESS*: 00-800-4422-3781

*Available from Germany, France, Italy, UK, Ireland

CENTRAL/SOUTH AMERICA:

Spanish Phone: 303-308-7143 (Mon-Fri 8:00am to 5:00pm MST)

Email: ONlit-spanish@hibbertco.com

Toll-Free from Mexico: Dial 01-800-288-2872 for Access -

then Dial 866-297-9322

ASIA/PACIFIC: LDC for ON Semiconductor – Asia Support

Phone: 303-675-2121 (Tue-Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong & Singapore:

001-800-4422-3781 Email: ONlit-asia@hibbertco.com

JAPAN: ON Semiconductor, Japan Customer Focus Center

4-32-1 Nishi-Gotanda, Shinagawa-ku, Tokyo, Japan 141-0031

Phone: 81–3–5740–2700

Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local

Sales Representative.