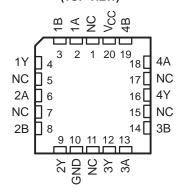

- Operate From 1.65 V to 3.6 V
- Specified From -40°C to 85°C,
 -40°C to 125°C, and -55°C to 125°C
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 4.6 ns at 3.3 V
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- Typical V_{OHV} (Output V_{OH} Undershoot)
 >2 V at V_{CC} = 3.3 V, T_A = 25°C
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
 - 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)


SN54LVC86A . . . J OR W PACKAGE SN74LVC86A . . . D, DB, NS, OR PW PACKAGE (TOP VIEW)

SN74LVC86A . . . RGY PACKAGE (TOP VIEW)

SN54LVC86A . . . FK PACKAGE (TOP VIEW)

NC - No internal connection

description/ordering information

The SN54LVC86A quadruple 2-input exclusive-OR gate is designed for 2.7-V to 3.6-V V_{CC} operation, and the SN74LVC86A quadruple 2-input exclusive-OR gate is designed for 1.65-V to 3.6-V V_{CC} operation.

The 'LVC86A devices perform the Boolean function $Y = A \oplus B$ or $Y = \overline{A}B + A\overline{B}$ in positive logic.

ORDERING INFORMATION

TA	PACK	AGE†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
-40°C to 85°C	QFN – RGY	Reel of 1000	SN74LVC86ARGYR	LC86A
		Tube of 50	SN74LVC86AD	
	SOIC - D	Reel of 2500	SN74LVC86ADR	LVC86A
		Reel of 250	SN74LVC86ADT	
4000 / 40500	SOP - NS	Reel of 2000	SN74LVC86ANSR	LVC86A
-40°C to 125°C	SSOP – DB	Reel of 2000	SN74LVC86ADBR	LC86A
		Tube of 90	SN74LVC86APW	
	TSSOP - PW	Reel of 2000	SN74LVC86APWR	LC86A
		Reel of 250	SN74LVC86APWT	
	CDIP – J	Tube of 25	SNJ54LVC86AJ	SNJ54LVC86AJ
-55°C to 125°C	CFP – W	Tube of 150	SNJ54LVC86AW	SNJ54LVC86AW
	LCCC - FK	Tube of 55	SNJ54LVC86AFK	SNJ54LVC86AFK

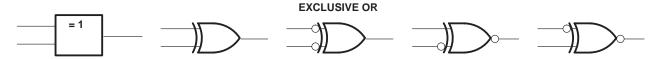
[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SCAS288P - JANUARY 1993 - REVISED FEBRUARY 2004

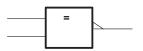
description/ordering information (continued)

A common application is as a true/complement element. If one of the inputs is low, the other input is reproduced in true form at the output. If one of the inputs is high, the signal on the other input is reproduced inverted at the output.


Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

FUNCTION TABLE (each gate)

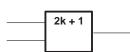
INP	UTS	OUTPUT
Α	В	Υ
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L


exclusive-OR logic

An exclusive-OR gate has many applications, some of which can be represented better by alternative logic symbols.

These five equivalent exclusive-OR symbols are valid for an SN74LVC86A gate in positive logic; negation may be shown at any two ports.

LOGIC-IDENTITY ELEMENT


The output is active (low) if all inputs stand at the same logic level (i.e., A = B).

EVEN-PARITY ELEMENT

The output is active (low) if an even number of inputs (i.e., 0 or 2) are active.

ODD-PARITY ELEMENT

The output is active (high) if an odd number of inputs (i.e., only 1 of the 2) are active.

SN54LVC86A, SN74LVC86A QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

SCAS288P - JANUARY 1993 - REVISED FEBRUARY 2004

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage range, V _{CC}	–0.5 V to 6.5 V
Input voltage range, V _I (see Note 1)	–0.5 V to 6.5 V
Output voltage range, VO (see Notes 1 and 2)	$-0.5 \text{ V to V}_{CC} + 0.5 \text{ V}$
Input clamp current, $I_{ K }(V_{ } < 0)$	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Continuous output current, IO	±50 mA
Continuous current through V _{CC} or GND	±100 mA
Package thermal impedance, θ _{JA} (see Note 3): D package	86°C/W
(see Note 3): DB package	96°C/W
(see Note 3): NS package	76°C/W
(see Note 3): PW package	113°C/W
(see Note 4): RGY package	47°C/W
Storage temperature range, T _{stq}	–65°C to 150°C
Power dissipation, P_{tot} ($T_A = -40^{\circ}$ C to 125°C) (see Notes 5 and 6)	500 mW

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. The value of V_{CC} is provided in the recommended operating conditions table.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.
- 4. The package thermal impedance is calculated in accordance with JESD 51-5.
- 5. For the D package, above 70° C the value of P_{tot} derates linearly with 8 mW/K.
- 6. For the DB, NS, and PW packages, above 60°C the value of Ptot derates linearly with 5.5 mW/K.

SN54LVC86A, SN74LVC86A QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

SCAS288P - JANUARY 1993 - REVISED FEBRUARY 2004

recommended operating conditions (see Note 7)

			SN54LV	/C86A		
			-55 TO	125°C	UNIT	
			MIN	MAX		
.,	Overally and the ma	Operating	2	3.6		
VCC	Supply voltage	Data retention only	1.5		V	
٧ _{IH}	High-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2		V	
VIL	Low-level input voltage	$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8	V	
VI	Input voltage		0	5.5	V	
Vo	Output voltage		0	Vcc	V	
	Library Lands of control	V _{CC} = 2.7 V		-12	4	
IOH	High-level output current	V _{CC} = 3 V		-24	mA	
		V _{CC} = 2.7 V		12		
lOL	Low-level output current	V _{CC} = 3 V		24	mA	
Δt/Δν	Input transition rise or fall rate	•		9	ns/V	

NOTE 7: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

recommended operating conditions (see Note 7)

					SN74L	_VC86A				
			T _A =	: 25°C	-40 T	O 85°C	-40 TO	O 125°C	UNIT	
			MIN	MAX	MIN	MAX	MIN	MAX		
.,	0	Operating	1.65	3.6	1.65	3.6	1.65	3.6	.,	
VCC	Supply voltage	Data retention only	1.5		1.5		1.5		V	
		V _{CC} = 1.65 V to 1.95 V	0.65 × V _C (0.65 × V _C (0.65 × V _C (
۷ _{IH}	High-level input voltage	V _{CC} = 2.3 V to 2.7 V	1.7		1.7		1.7		V	
	voltago	V _{CC} = 2.7 V to 3.6 V	2		2		2			
	Low-level input voltage	V _{CC} = 1.65 V to 1.95 V		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$		$0.35 \times V_{CC}$		
٧ _{IL}		V _{CC} = 2.3 V to 2.7 V		0.7		0.7		0.7	V	
		V _{CC} = 2.7 V to 3.6 V		0.8		0.8		0.8		
٧ _I	Input voltage		0	5.5	0	5.5	0	5.5	V	
VO	Output voltage		0	Vcc	0	Vcc	0	VCC	V	
		V _{CC} = 1.65 V		-4		-4		-4		
1	High-level	V _{CC} = 2.3 V		-8		-8		-8	A	
ЮН	output current	V _{CC} = 2.7 V		-12		-12		-12	mA	
		VCC = 3 V		-24		-24		-24		
		V _{CC} = 1.65 V		4		4		4		
lai	Low-level	V _{CC} = 2.3 V		8		8		8	mA	
loL	output current	V _{CC} = 2.7 V		12		12		12		
		V _{CC} = 3 V		24		24		24		
Δt/Δν	Input transition ris	se or fall rate		9		9		9	ns/V	

NOTE 7: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

SCAS288P - JANUARY 1993 - REVISED FEBRUARY 2004

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

				SN5	6A		
PARAMETER	TEST CONDITIONS	VCC	-55	UNIT			
	$I_{OH} = -100 \mu\text{A}$	2.7 V to 3.6 V	V _{CC} -0.2	2			
V	1 40 mA	2.7 V	2.2			.,	
VOH	I _{OH} = −12 mA	3 V	2.4			V	
	$I_{OH} = -24 \text{ mA}$	3 V	2.2				
	I _{OL} = 100 μA	2.7 V to 3.6 V			0.2		
VOL	$I_{OL} = 12 \text{ mA}$	A				0.4	V
	I _{OL} = 24 mA	3 V			0.55		
ΙΙ	$V_I = 5.5 \text{ V or GND}$		3.6 V			±5	μΑ
Icc	$V_I = V_{CC}$ or GND	IO = 0	3.6 V			10	μΑ
ΔI _{CC}	One input atV _{CC} – 0.6 V, Other inputs at V _{CC} or GND		2.7 V to 3.6 V			500	μΑ
Ci	$V_I = V_{CC}$ or GND		3.3 V		5†		pF

[†] T_A = 25°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

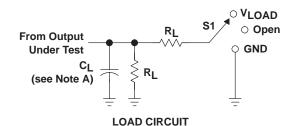
						SN	174LVC86	SA S			
PARAMETER	TEST CONDITIONS	3	VCC	T _A = 25°C			-40 TO 85°C		-40 TO 125°C		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
	I _{OH} = -100 μA		1.65 V to 3.6 V	V _{CC} -0.2	2		V _{CC} -0.	2	V _{CC} -0.	3	
	$I_{OH} = -4 \text{ mA}$		1.65 V	1.29			1.2		1.05		
	$I_{OH} = -8 \text{ mA}$		2.3 V	1.9			1.7		1.55		V
VOH	10 m A		2.7 V	2.2			2.2		2.05		V
	I _{OH} = -12 mA		3 V	2.4			2.4		2.25		
	$I_{OH} = -24 \text{ mA}$		3 V	2.3			2.2		2		
	I _{OL} = 100 μA		1.65 V to 3.6 V			0.1		0.2		0.3	
	I _{OL} = 4 mA	1.65 V			0.24		0.45		0.6		
V_{OL}	$I_{OL} = 8 \text{ mA}$		2.3 V			0.3		0.7		0.75	V
	I _{OL} = 12 mA		2.7 V			0.4		0.4		0.6	
	$I_{OL} = 24 \text{ mA}$		3 V			0.55		0.55		0.8	
lį	V _I = 5.5 V or GND		3.6 V			±1		±5		±20	μΑ
ICC	$V_I = V_{CC}$ or GND	IO = 0	3.6 V			1		10		40	μΑ
ΔICC	One input at V _{CC} – 0.6 V, Other inputs at V _{CC} or GNI)	2.7 V to 3.6 V			500		500		5000	μΑ
Ci	$V_I = V_{CC}$ or GND		3.3 V		5						pF

SN54LVC86A, SN74LVC86A QUADRUPLE 2-INPUT EXCLUSIVE-OR GATES

SCAS288P - JANUARY 1993 - REVISED FEBRUARY 2004

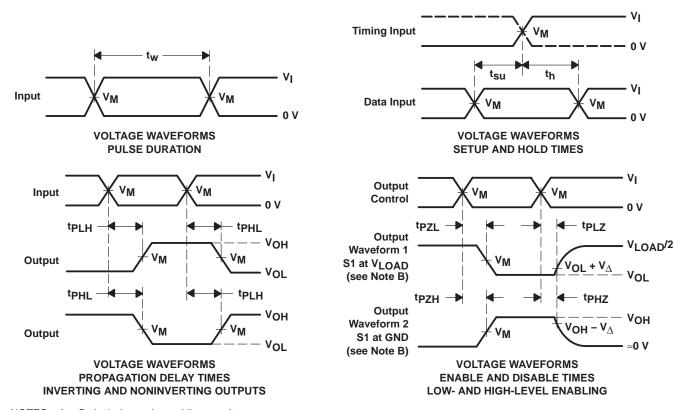
switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		SN54LVC86A					1
PARAMETER	FROM (INPUT)	TO (OUTPUT)	Vcс	-55 TO 125°C		UNIT	l
	(1141 01)	(6611 61)		MIN	MAX		
			2.7 V		5.6		1
^t pd	A	Y	$3.3~\text{V}\pm0.3~\text{V}$	1	4.6	ns	


switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		TO (OUTPUT)	Vcc			SN	74LVC86	6A			
PARAMETER	FROM (INPUT)			T _A = 25°C			-40 TO 85°C		-40 TO 125°C		UNIT
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
			1.8 V ± 0.15 V	1	4.1	9.4	1	9.9	1	11.4	ns
		Y	2.5 V ± 0.2 V	1	2.9	7.1	1	7.6	1	9.7	
^t pd	Α		2.7 V	1	2.8	5.4	1	5.6	1	7.1	
			3.3 V ± 0.3 V	1	2.5	4.4	1	4.6	1	5.8	
t _{sk(o)}			3.3 V ± 0.3 V					1		1.5	ns

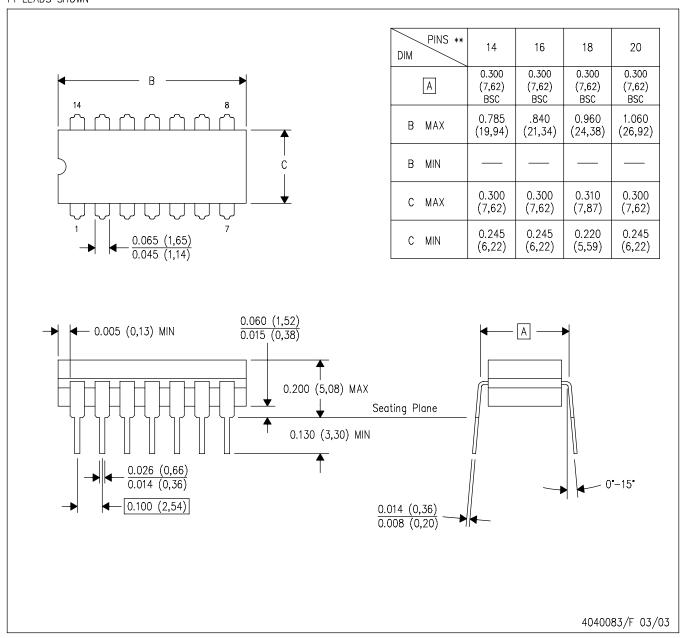
operating characteristics, T_A = 25°C


	PARAMETER	TEST CONDITIONS	VCC	TYP	UNIT
			1.8 V	6.5	
C _{pd}	Power dissipation capacitance per gate	f = 10 MHz	2.5 V	7.5	pF
			3.3 V	8.5	

PARAMETER MEASUREMENT INFORMATION

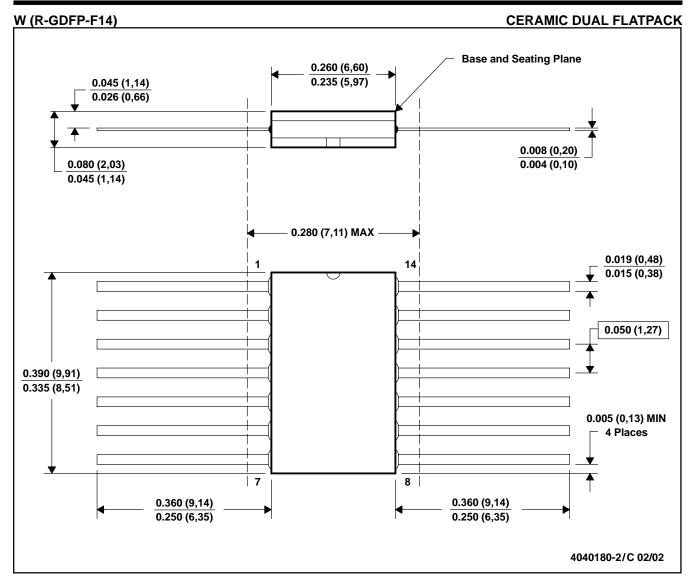
TEST	S1
tPLH/tPHL	Open
tPLZ/tPZL	VLOAD
^t PHZ ^{/t} PZH	GND

.,	INF	PUTS	.,	V		_	.,
Vcc	٧ _I	t _r /t _f	νM	V _M V _{LOAD} C		R_L	V_Δ
1.8 V ± 0.15 V	VCC	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	VCC	≤2 ns	V _{CC} /2	2×V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3.3 V \pm 0.3 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V


NOTES: A. C_I includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Ω = 50 Ω.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. tpLZ and tpHZ are the same as tdis.
- F. tpzL and tpzH are the same as ten.
- G. tpLH and tpHL are the same as tpd.
- H. All parameters and waveforms are not applicable to all devices.

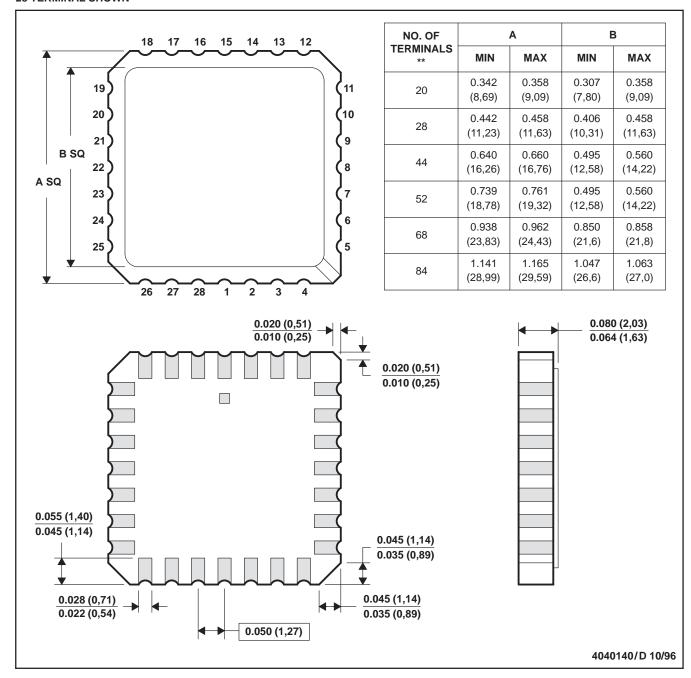
Figure 1. Load Circuit and Voltage Waveforms



14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

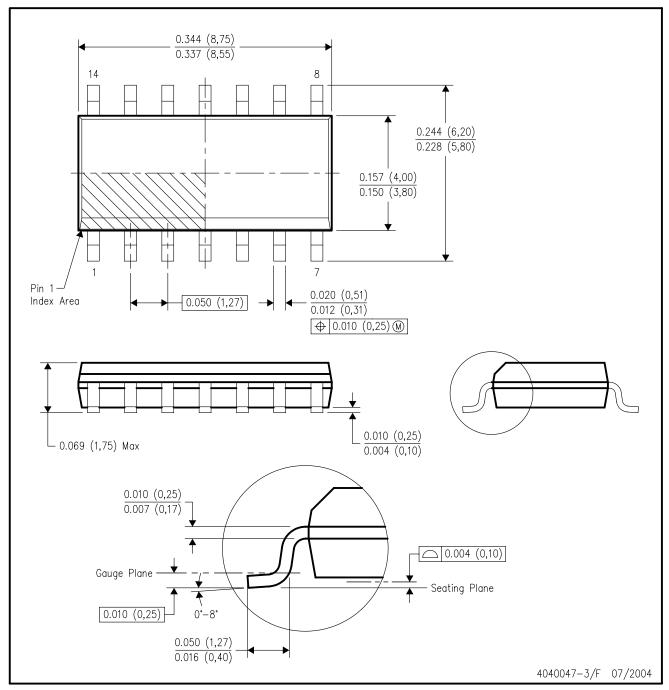


- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within MIL STD 1835 GDFP1-F14 and JEDEC MO-092AB

FK (S-CQCC-N**)

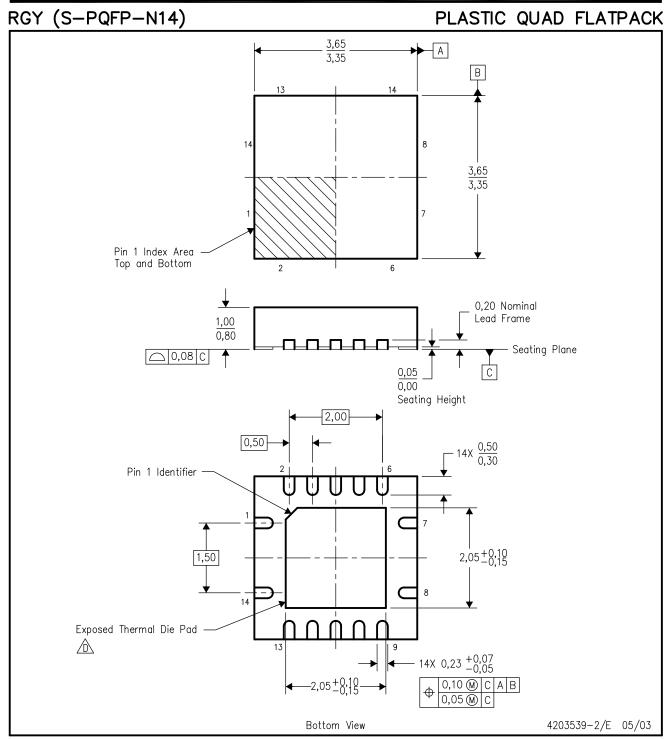
28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

D (R-PDSO-G14)


PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-012 variation AB.

- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. QFN (Quad Flatpack No-Lead) package configuration.
 - The package thermal performance may be enhanced by bonding the thermal die pad to an external thermal plane. This pad is electrically and thermally connected to the backside of the die and possibly selected ground leads.
 - E. Package complies to JEDEC MO-241 variation BA.

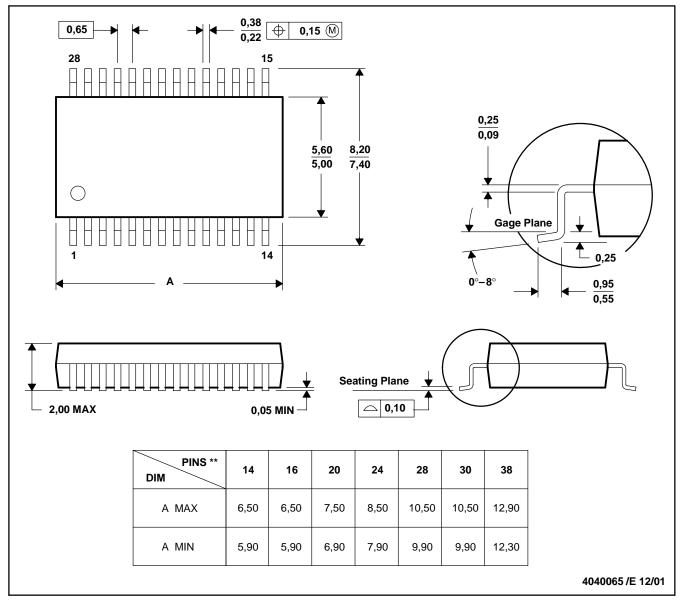
MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:


- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

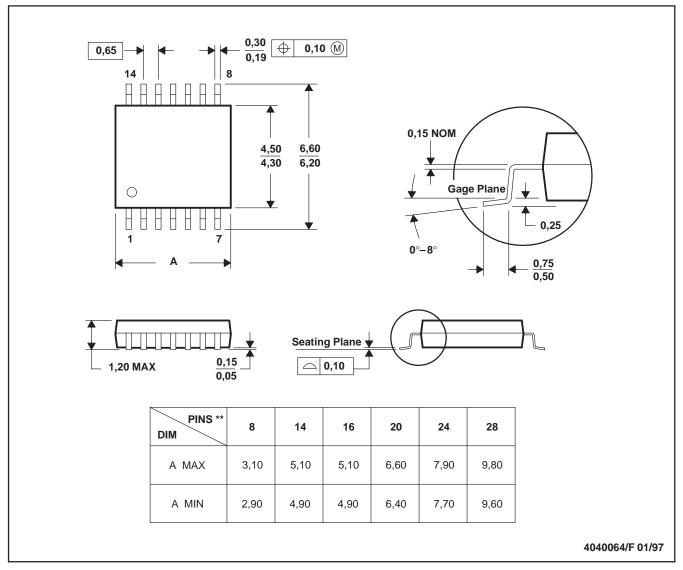
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.


C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-150

PW (R-PDSO-G**)

14 PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.

D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2004, Texas Instruments Incorporated